## Solutions to Final in Mathematics A

## Moed A

1) a) Since $1-x+e^{x}$ equals two when $x=0$, this is a limit of the type $2 / 0$ which does not exist.
b) We have

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+12}-4}{x+2}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1+\frac{12}{x^{2}}\right)}-4}{x+2}=\lim _{x \rightarrow-\infty} \frac{-x \sqrt{\left(1+\frac{12}{x^{2}}\right)}-4}{x\left(1+\frac{2}{x}\right)}
$$

Here, the minus sign follows from the fact that for negative values of $x$, we have $\sqrt{x^{2}}=-x$. Thus, we obtain,

$$
\lim _{x \rightarrow-\infty} \frac{-x\left(\sqrt{\left(1+\frac{12}{x^{2}}\right)}-\frac{4}{x}\right)}{x\left(1+\frac{2}{x}\right)}=\lim _{x \rightarrow-\infty} \frac{-\left(\sqrt{\left(1+\frac{12}{x^{2}}\right)}-\frac{4}{x}\right)}{1+\frac{2}{x}}=-1
$$

2) The function is defined for all $x>0$. Write $f(x)=-1-\frac{\ln x}{\sqrt{x}}$. Differentiating we obtain

$$
f^{\prime}(x)=\frac{\frac{1}{x} \sqrt{x}-\ln x \cdot \frac{1}{2 x \sqrt{x}}}{x}=\frac{\ln x-2}{2 x \sqrt{x}}
$$

The derivative is zero if $\ln x-2=0$ or $x=e^{2}$. Because the logarithm is an increasing function, we have $f^{\prime}(x)>0$ for all $x>e^{2}$ and $f^{\prime}(x)<0$ for all $0<x<e^{2}$. Hence $x=e^{2}$ is a minimum point.

The function can have a vertical asymptote at $x=0$ and a horizontal one at infinity. At $x=0$ we have

$$
\lim _{x \rightarrow 0^{+}}\left(-1-\frac{\ln x}{\sqrt{x}}\right)=\infty
$$

Indeed, this follows from $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{x}}=\infty$. Hence $x=0$ is a vertical asymptote.

At infinity we have

$$
a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty}\left(\frac{-1}{x}-\frac{\ln x}{x \sqrt{x}}\right) \stackrel{L}{=} 0-\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{3}{2} x^{1 / 2}}=0
$$

Hence

$$
b=\lim _{x \rightarrow \infty} f(x)=-1-\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} \stackrel{L}{=}-1-\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=-1-\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x}=-1
$$

Hence $y=-1$ is a horizontal asymptote at infinity.
3) As a composite function of continuous functions, it is clear that $f(x)$ is continuous for all $x \neq 4$. We check at $x=4$. We clearly have $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} a=a$. To compute $\lim _{x \rightarrow 4^{+}} f(x)$ we define

$$
y=(x-3)^{\frac{1}{x-4}}
$$

and taking the logarithm in both sides we obtain

$$
\ln y=\frac{\ln (x-3)}{x-4}
$$

Hence

$$
\lim _{x \rightarrow 4^{+}} \ln y=\lim _{x \rightarrow 4^{+}} \frac{\ln (x-3)}{x-4} \stackrel{L}{=} \lim _{x \rightarrow 4^{+}} \frac{\frac{1}{x-3}}{1}=1
$$

Hence $\ln \lim _{x \rightarrow 4^{+}} y=1$ or $\lim _{x \rightarrow 4^{+}} y=e$. Thus, for $f(x)$ to be continuous at $x=4$ we need $a=e$.
4) The function $f(x)=\ln \left(x^{2}+1\right)$ is differentiable for all $x$. If $x>0$ we apply the mean value theorem to the interval $[0, x]$, and if $x<0$ we apply it to $[x, 0]$. Since $f^{\prime}(x)=\frac{2 x}{x^{2}+1}$, it follows from the mean value theorem that there is a point $c$ between zero and $x$ such that

$$
f^{\prime}(c)=\frac{2 c}{c^{2}+1}=\frac{f(x)-f(0)}{x-0}=\frac{\ln \left(x^{2}+1\right)}{x}
$$

Here we used the fact that $f(0)=0$. Thus the result will follow if we prove that $-1 \leq$ $\frac{2 c}{c^{2}+1} \leq 1$ for all $c$. Multiplying by $c^{2}+1$ this is equivalent to $-\left(c^{2}+1\right) \leq 2 c \leq c^{2}+1$ or $-\left(c^{2}+2 c+1\right) \leq 0 \leq c^{2}-2 c+1$ or $-(c+1)^{2} \leq 0 \leq(c-1)^{2}$ which is clearly true.
5) Define $f(x)=x^{3}-3 a x+2$. Then $f^{\prime}(x)=3 x^{2}-3 a=3\left(x^{2}-a\right)$. Suppose that $a<0$. Then $f^{\prime}(x)>0$ for all $x$, which means that $f(x)$ is an increasing function. We proved in class that a polynomial with odd degree has at least one real root. Hence, if $a<0$, then $f(x)$ has exactly one real root. If $a=0$, then $x^{3}-2$ has one real root, so we may assume that $a>0$. In this case, $f^{\prime}(x)=0$ if and only if $x= \pm \sqrt{a}$. The function $f^{\prime}(x)$ is positive if $x<-\sqrt{a}$ or $x>\sqrt{a}$ and negative if $-\sqrt{a}<x<\sqrt{a}$. Hence $f(x)$ has a maximum point at $x=-\sqrt{a}$ and a minimum point at $x=\sqrt{a}$. We have $f(-\sqrt{a})=-a^{3 / 2}-3 a\left(-a^{1 / 2}+2=2\left(a^{3 / 2}+2\right)>0\right.$. Since $f(x)$ is an increasing function in the interval $(-\infty,-\sqrt{a})$, and since the maximum
point gives us a positive number, it follows that $f(x)$ has one real root at the interval $(-\infty,-\sqrt{a})$. Thus, for $f(x)$ to have a unique real root we must have that $f(\sqrt{a})>0$. Hence $a^{3 / 2}-3 a^{3 / 2}+2=2\left(1-a^{3 / 2}\right)>0$. Hence $a<1$. We conclude that $f(x)$ has a unique real root if and only if $a<1$.
6) Differentiating $g(x)$ gives us $g^{\prime}(x)=f^{\prime}(x) f^{\prime}(f(x))$ and $g^{\prime \prime}(x)=f^{\prime \prime}(x) f^{\prime}(f(x))+$ $\left(f^{\prime}(x)\right)^{2} f^{\prime \prime}(f(x))$ where we obtained the last equality by using the formula for the derivative of a product of two functions. Hence, $g^{\prime}(1)=f^{\prime}(1) f^{\prime}(f(1))=f^{\prime}(1) f^{\prime}(2)=1 \cdot 1=1$. Also, $g^{\prime \prime}(1)=f^{\prime \prime}(1) f^{\prime}(f(1))+\left(f^{\prime}(1)\right)^{2} f^{\prime \prime}(f(1))=f^{\prime \prime}(1) f^{\prime}(2)+\left(f^{\prime}(1)\right)^{2} f^{\prime \prime}(2)=(-1) \cdot 1+1^{2} \cdot(-1)=$ -2 .
7) Plug $x=1000$ into the equality $f(x) f(f(x))=1$ and get $f(1000) f(f(1000))=1$ or $999 f(999)=1$. Hence $f(999)=\frac{1}{999}$. Since $f(x)$ is continuous and obtains the values $\frac{1}{999}$ and 999 then by a theorem ( see problem 9 in Exercise Number 5) it obtains any value between $\frac{1}{999}$ and 999. Hence there is a number $a$ such that $f(a)=500$.

