Solutions to Final in Mathematics A

Moed A

1) a) Since 1 — z + €” equals two when x = 0, this is a limit of the type 2/0 which does

not exist.
b) We have
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Here, the minus sign follows from the fact that for negative values of x, we have Va2 = —uz.

Thus, we obtain,
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2) The function is defined for all z > 0. Write f(z) = —1— 1\;‘—% Differentiating we obtain
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The derivative is zero if Inx — 2 = 0 or x = e*. Because the logarithm is an increasing
function, we have f'(x) > 0 for all z > ¢ and f'(z) < 0 for all 0 < z < €. Hence x = ¢* is
a minimum point.

The function can have a vertical asymptote at = 0 and a horizontal one at infinity. At
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Indeed, this follows from lim,_,o+ Inz = —oo0 and lim,_,q+ \lf = 00. Hence x = 0 is a vertical
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z = (0 we have

asymptote.

At infinity we have
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Hence
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Hence y = —1 is a horizontal asymptote at infinity.

3) As a composite function of continuous functions, it is clear that f(z) is continuous for
all x # 4. We check at x = 4. We clearly have lim, .4~ f(x) = lim,_.4- a = a. To compute

lim, 4+ f(z) we define
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and taking the logarithm in both sides we obtain
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Hence Inlim, 4+ y = 1 or lim,_ 4+ y = e. Thus, for f(x) to be continuous at x = 4 we need

a = €.

4) The function f(z) = In(z? + 1) is differentiable for all z. If z > 0 we apply the mean

value theorem to the interval [0, z], and if z < 0 we apply it to [z, 0]. Since f'(z) = %, it

follows from the mean value theorem that there is a point ¢ between zero and x such that
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Here we used the fact that f(0) = 0. Thus the result will follow if we prove that —1 <

ijl < 1 for all ¢. Multiplying by ¢? + 1 this is equivalent to —(02 +1) <2< 2+ 1or

—(2+2c+1)<0<—2c+1or —(c+1)2 <0< (c— 1) which is clearly true.

5) Define f(z) = 2* — 3azx + 2. Then f'(z) = 32> — 3a = 3(2* — a). Suppose that a < 0.
Then f'(x) > 0 for all x, which means that f(z) is an increasing function. We proved in class
that a polynomial with odd degree has at least one real root. Hence, if a < 0, then f(z) has
exactly one real root. If @ = 0, then 2% — 2 has one real root, so we may assume that a > 0.
In this case, f'(x) = 0 if and only if x = £+y/a. The function f'(x) is positive if x < —/a or
x > y/a and negative if —y/a < z < y/a. Hence f(x) has a maximum point at + = —/a and
a minimum point at x = \/a. We have f(—+/a) = —a*? — 3a(—a'/? + 2 = 2(a®? + 2) > 0.

Since f(x) is an increasing function in the interval (—oo, —+/a) , and since the maximum



point gives us a positive number, it follows that f(x) has one real root at the interval
(—00, —y/a). Thus, for f(x) to have a unique real root we must have that f(y/a) > 0. Hence
a*? —3a%? 4+ 2 = 2(1 — a®?) > 0. Hence a < 1. We conclude that f(x) has a unique real
root if and only if a < 1.

6) Differentiating g(z) gives us ¢'(z) = f'(z)f'(f(x)) and ¢"(z) = f"(x)f'(f(x)) +
(f'(2))?f"(f(z)) where we obtained the last equality by using the formula for the derivative
of a product of two functions. Hence, ¢'(1) = f(1)f'(f(1)) = f'(1)f(2) =1-1 = 1. Also,
g"(D) = f"OF Q)+ QP W) = W)+ W)PR2) = (-1)- 1+12-(-1) =
—2.

7) Plug = = 1000 into the equality f(z)f(f(x)) = 1 and get f(1000)f(f(1000)) =1 or
999£(999) = 1. Hence f(999) = 555 Since f(z) is continuous and obtains the values 55 and
999 then by a theorem ( see problem 9 in Exercise Number 5) it obtains any value between

555 and 999. Hence there is a number a such that f(a) = 500.



